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On the analytical summation of Fourier series and its
relation to the asymptotic behaviour of Fourier transforms
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TN 37831-6110, USA
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Abstract. Forms of the Poisson summation formula (PSF) appropriate for the summation
of semi-infinite and infinite Fourier series are derived. Application of these results to the
acceleration of convergence of various types of series with monotonically decreasing coefficient
functions yields transformed series with terms that decay either exponentially or with the inverse
first or second power of the index variable. These two very different convergence properties
are explained in terms of the asymptotic properties of the relevant Fourier transforms, which
are in turn related to the power series expansions of the summand functions in the original
Fourier series. The result is that the Poisson summation formula works best for Fourier cosine
series in which the summand functions are expansible in even powers, and for Fourier sine
series in which the summand functions have power series with odd powers. Here, application
of the PSF produces series of terms that decay exponentially with increasing argumentx. In
contrast, application of the semi-infinite version of the PSF to Fourier cosine series of terms
with odd-power expansions, or to Fourier sine series of terms with even-power expansions yields
transformed series involving functions of the form exp(x)E1(x)± exp(−x)Ei(x), which decay
approximately as 1/x. If the summand function in the Fourier series has a power series with
both even and odd powers, the transformed series involves sine and cosine integral functions,
which decay approximately as 1/x2. Fourier series of these last three types in general require
additional acceleration, for example, by application of the Kummer transformation.

1. Introduction

Fourier series arise in many branches of mathematical physics involving the solution of
linear second-order partial differential equations. In most cases, however, the slowness of
convergence of such series precludes their usefulness in numerical calculations. In recent
work [1] it was shown how the Poisson summation formula (PSF) could be applied to the
acceleration of Fourier-series of the Laplace equation. This success suggests that it might
be desirable to examine the application of the PSF to Fourier series of more general kinds,
such as that considered in a recent paper by Oleksy [2]. From the form of the PSF, it is clear
that the extent of acceleration so obtained is determined by the asymptotic behaviour of the
Fourier transforms of the functions in the original Fourier series. The asymptotic behaviour
of a transform for large arguments is usually considered in relation to the behaviour of
the original function for small arguments, andvice versa. While many such Tauberian
theorems are known for Laplace transforms [3, pp 121–32], surprisingly few results are
available for Fourier transforms, and none of these relate the asymptotic behaviour of the
Fourier transform of a function to its power series. In the present paper we show how such
a relation can be derived, with the aim of providing a rather general way of determining
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whether the PSF is useful for a given slowly convergent Fourier series. We do this by
first considering three specific cases which illustrate the different convergence behaviour of
series resulting from application of the PSF.

2. Poisson’s formula for semi-infinite series

The Poisson summation formula for an exponential Fourier series
∞∑

n=−∞
f (n) eicn =

∫ ∞
−∞

f (u) eicu du

+
∞∑
m=1

[ ∫ ∞
−∞

f (u) e(2mπ+c)iu du+
∫ ∞
−∞

f (u) e(2mπ−c)iu du

]
(1)

which, for even real-valued functionsf reduces to
∞∑

n=−∞
f (n) eicn =

∫ ∞
−∞

f (u) coscu du

+
∞∑
m=1

[ ∫ ∞
−∞

f (u) cos(2mπ + c)u du+
∫ ∞
−∞

f (u) cos(2mπ − c)u du

]
(1a)

can be derived in various ways, as discussed in treatises on complex analysis [4, p 222] and
the theory of distributions [5, p 254, 6, pp 46–7]. Its generalization to semi-infinite series
is more clearly obtained by a somewhat different route, which also serves to clarify the
relation of the PSF to other methods of evaluating series. This approach is suggested by
consideration of the series

∞∑
n=0

e2π inx

n+ a ≡
∞∑
n=0

cos 2nπx

n+ a + i
∞∑
n=1

sin 2nπx

n+ a (2)

wherex is between 0 and 1, which arose [2] in a recently proposed model for interaction
between atoms in adsorbed monolayers. For present purposes, it is to be observed that an
analytical transformation of this series can be constructed by use of the result

∞∑
n=0

e2nπ ix

n+ a =
∫ ∞

0

e−az

1− e2π ix−z dz (3)

due to Lerch [7] (see also Whittaker and Watson [8, p 280, problem 8]), which can be
readily derived by representing the general term in the exponential form of equation (2) as
a Laplace transform integral

e2nπ ix

n+ a = (e
2π ix)n

∫ ∞
0

e−(n+a)z dz (4)

interchanging the order of summation and integration, and summing the geometric series of
exponential functions. This type of integral representation is of considerable importance in
the theory of the zeta functions of Riemann and Hurwitz [8, pp 265–80], and is also useful
as a method of summing a variety of slowly converging series [9]. It also suggests that an
integral representation can be derived for a general Fourier series, in which the coefficient
functionsf (n) can be represented as a Laplace transform of some other functionG(z):

∞∑
n=0

f (n) eicn =
∞∑
n=0

{∫ ∞
0
G(z) e−nz dz

}
(eic)n =

∫ ∞
0

G(z)

1− eic−z dz. (5)
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While this integral could, in principle, be separated into real and imaginary parts and
evaluated numerically, it proves more convenient to expand the denominator of the integrand
in an infinite series of reciprocal linear terms. This expansion can be obtained by combining
the identity

1

1− eb−z
= 1

2

[
1− coth

(
b − z

2

)]
(6)

whereb is a constant, with the result of applying the Mittag–Leffler expansion theorem
[10, pp 175, 191–2] to the Langevin function

L(y) ≡ cothy − 1

y
= 2y

∞∑
n=1

1

y2+ (nπ)2 (7)

as follows
1

1− eb−z
= 1

2

[
1− 2

b − z −
{

coth

(
b − z

2

)
− 2

b − z
}]

= 1

2
− 1

b − z − 2(b − z)
∞∑
n=1

1

(b − z)2+ (2nπ)2

= 1

2
− 1

b − z −
∞∑
n=1

[
1

b − z+ 2nπ i
+ 1

b − z− 2nπ i

]
. (8)

On puttingb = ic, there results

1

1− eic−z =
1

2
+ 1

z− ic
+
∞∑
n=1

[
1

z− i(2nπ + c) +
1

z+ i(2nπ − c)
]
. (9)

Multiplying by G(z) and integrating from zero to infinity∫ ∞
0

G(z)

1+ eic−z dz = 1

2

∫ ∞
0
G(z) dz+

∫ ∞
0

G(z)

z− ic
dz

+
∞∑
m=1

[ ∫ ∞
0

G(z)

z− i(2mπ + c) dz+
∫ ∞

0

G(z)

z+ i(2mπ − c) dz

]
. (10)

Now the first of the integrals in the series on the right-hand side of equation (10) can be
rearranged as follows∫ ∞

0

G(z)

z− i(2mπ + c) dz =
∫ ∞

0
G(z)

{∫ ∞
0

e−(z−i(2mπ+c))t dt

}
dz

=
∫ ∞

0
e(2mπ+c)it

{∫ ∞
0
G(z) e−tz dz

}
dt

=
∫ ∞

0
f (t) e(2mπ+c)it dt (11)

and this result is also valid form = 0. Proceeding similarly for the second integral∫ ∞
0

G(z)

z+ i(2mπ − c) dz =
∫ ∞

0
f (t) e−(2mπ+c)it dt. (12)

The original Fourier series can, therefore, be written in the form
∞∑
n=0

f (n) eicn = 1

2
f (0)+

∫ ∞
0
f (t) eict dt

+
∞∑
m=1

[ ∫ ∞
0
f (t) e(2mπ+c)it dt +

∫ ∞
0
f (t) e−(2mπ−c)it dt

]
. (13)
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For an even, real-valued functionf (n) that is also defined forn = 0, the infinite and
semi-infinite sums are related by

∞∑
n=0

f (n) coscn ≡ 1

2
f (0)+ 1

2

∞∑
n=−∞

f (n) eicn (14)

and the infinite and semi-infinite Fourier transforms by∫ ∞
0
f (u) costu du = 1

2

∫ ∞
−∞

f (u) costu du = 1

2

∫ ∞
−∞

f (u) eitu du. (15)

On substitution of equations (14) and (15) into the real part of equation (13), the terms in
f (0) cancel, yielding equation (1a).

3. Reciprocal linear coefficients

Oleksy’s series [2], for whichc = 2πx andG(z) = exp(−az), is evidently an exacting
test of any proposed method for convergence acceleration, since the coefficient functions
decrease slowly with increasingn, and the series is divergent in the (physically important)
limit as x tends to 0. From the practical viewpoint, the series is much more conveniently
evaluated by observing that

h(z) =
∞∑
n=0

zn

n+ a =
1

a2
F1(a, 1, a + 1; z) (16)

wherez = exp(2π ix), than by the numerical acceleration algorithm demonstrated by Oleksy.
For this confluent hypergeometric function the Padé approximations are known in closed
form (see [11, ch 13]). Thus, the [5, 5] Padé approximation witha = 3/2 gives

h = 0.487 495 52+ 0.266 054 04i

where the figures are accurate to two digits in the last decimal place. Therefore
∞∑
n=0

cos(nπ/2)

n+ 3/2
= 0.487 495 52

∞∑
n=1

sin(nπ/2)

n+ 3/2
= 0.266 0540. (17)

However, for our present purposes the equivalent expansion in terms of Fourier transforms
is of more interest, since as will be seen, the resulting series has convergence properties
that are typical of what is expected for a wide class of functions. After straightforward
manipulations (see appendix A), we find that application of equation (13) gives
∞∑
n=0

cos 2πnx

n+ a = 1

2a
+ g(2πax)+

∞∑
n=1

[g(2πa(n+ x))+ g(2πa(n− x))] (18)

and
∞∑
n=1

sin 2πnx

n+ a =
∞∑
n=1

[f (2πa(n− x))− f (2πa(n+ x))] (19)

for the real and imaginary parts of the exponential Fourier series, where the auxiliary
functionsf andg are defined by

g(y) ≡ cosy Ci(y)+ siny Si(y) f (y) ≡ siny Ci(y)− cosy Si(y)

Si(y) ≡
∫ ∞
y

sint

t
dt Ci(y) ≡

∫ ∞
y

cost

t
dt.
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Observing that the asymptotic formula forg is [12, p 233]

g(y) ∼ 1

y2

[
1− 3!

y2
+ 5!

y4
−+ · · ·

]
(20)

it is clear that the transformed cosine series will converge much more rapidly than the
original series. For example, ifa = 10 andx = 0.5 (for which the sine series vanishes),
the leading term becomes less than 0.000 001 at aboutn = 40. While this represents
an enormous improvement over the original series, the convergence can be improved still
further by application of the Kummer transformation [13, pp 171–2]. Adding and subtracting
the first term in the asymptotic expansion
∞∑
n=0

cos 2nπx

n+ a = 1

2a
+ g(2πax)+

∞∑
n=1

[
g(2πa(n+ x))− 1

(2πa)2(n+ x)2
]

+
∞∑
n=1

[
g(2πa(n− x))− 1

(2πa)2(n+ x)2
]
+ ζ(x, 2)+ ζ(−x, 2)

(2πa)2
(21)

whereζ is the Hurwitz zeta function [8, p 265] defined by

ζ(x, s) ≡
∞∑
n=1

1

(n+ x)s
which can be easily evaluated, as described in appendix B. The difference betweeng and
the first term in its asymptotic expansion tends to zero very rapidly, and all but the first
four terms in the transformed series are less than 0.000 0001.

The transformed sine series may be similarly rearranged. Noting that the asymptotic
expansion off is

f (y) ∼ 1

y

[
1− 2!

y2
+ 4!

y4
−+ · · ·

]
(22)

the leading term may be added and subtracted as before, giving
∞∑
n=1

sin 2πnx

n+ a =
∞∑
n=1

[
f (2πa(n− x))− 1

(2πa)(n− x)
]

−
∞∑
n=1

[
f (2πa(n+ x))− 1

(2πa)(n+ x)
]
+ 1

4πa2

[
1

πx
− cotπx

]
(23)

where use has been made of the result
∞∑
n=1

1

n2− x2
= π

2x

[
1

πx
− cotπx

]
(24)

obtained by rearranging the Mittag–Leffler expansion of the cotangent function [10, p 175].
A particular advantage of the transformed series given by equations (21) and (23), as
compared with both the numerical procedure described by Oleksy [2] and the representation
as a hypergeometric series, is that the physically important limiting case whenx tends to
0 or 1 (and the series is divergent) can be easily dealt with. In fact, the cosine series
converges equally well for any other finite value ofx, since the divergence is localized in
the termsg(2πax) or g(2πa(1− x)), which are logarithmically singular as their respective
arguments tend to zero. It is also important to point out that the need for the Kummer
transformation to obtain equations (21) and (23) is a result of the asymptotic behaviour of
the Fourier transforms that arise for this particular function. In many cases, the use of an
additional transformation is unnecessary, as it is for some of the examples considered later
in the paper.
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4. Reciprocal quadratic coefficients

In the example considered in the previous section, both the real and imaginary parts of the
exponential Fourier series had comparable convergence properties, determined by the sine
and cosine integral functions. For the real and imaginary parts of

∞∑
n=0

eicn

n2+ b2
≡
∞∑
n=0

coscn

n2+ b2
+ i

∞∑
n=1

sincn

n2+ b2
(25)

application of the appropriate forms of the PSF results in series with very different properties.
The required Fourier sine and cosine transforms are readily available from the results∫ ∞

0

t − ib

t2+ b2
eict dt = ebcE1(bc) (26)

and ∫ ∞
0

t + ib

t2+ b2
eict dt = e−bc[−Ei(bc)+ iπ ] (27)

which are given by Abramowitz and Stegun [12, p 230], where E1 and Ei are the exponential
integral functions

E1(x) ≡
∫ ∞
x

e−t

t
dt Ei(x) ≡ PV

∫ x

−∞

et

t
dt.

Addition of equations (26) and (27) and separation of the real and imaginary parts gives∫ ∞
0

t cosct

t2+ b2
dt = 1

2
[ebcE1(bc)− e−bc Ei(bc)] (28)

and ∫ ∞
0

t sinct

t2+ b2
dt = π

2
e−bc (29)

and similarly, subtraction of equation (26) from equation (27) gives∫ ∞
0

b sinct

t2+ b2
dt = 1

2
[ebcE1(bc)+ e−bc Ei(bc)] (30)

and ∫ ∞
0

b cosct

t2+ b2
dt = π

2
e−bc. (31)

The real and imaginary parts of equation (13) are
∞∑
n=0

f (n) coscn = 1

2
f (0)+

∫ ∞
0
f (t) cosct dt

+
∞∑
m=1

[ ∫ ∞
0
f (t) cos(2mπ + c)t dt +

∫ ∞
0
f (t) cos(2mπ − c)t dt

]
(32)

and
∞∑
n=1

f (n) sincn =
∫ ∞

0
f (t) sinct dt

+
∞∑
m=1

[ ∫ ∞
0
f (t) sin(2mπ + c)t dt −

∫ ∞
0
f (t) sin(2mπ − c)t dt

]
. (33)
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The real part of equation (25) is well known and can easily be derived by residue theory,
as shown by Henrici [14, p 271]. The exponentials in the Fourier cosine transforms given
by equation (31) can be summed as geometric series, giving, after transposing terms

∞∑
n=1

coscn

b2+ n2
= π

2b
· coshb(π − c)

sinhbπ
− 1

2b2
. (34)

The imaginary part of equation (25) follows by use of equation (30) in equation (33)

∞∑
n=1

sincn

b2+ n2
= 1

2b
[ebcE1(bc)+ e−bc Ei(bc)]

+ 1

2b

∞∑
m=1

{e(2mπ+c)bE1[(2mπ + c)b] + e−(2mπ+c)b Ei[(2mπ + c)b]

−e(2mπ−c)bE1[(2mπ − c)b] − e−(2mπ−c)b Ei[(2mπ − c)b]}
= 1

2b
[ebcE1(bc)+ e−bc Ei(bc)]

+
∞∑
m=1

{e(2mπ+b)cE1[(2mπ + c)b] − e(2mπ−b)cE1[(2mπ − c)b]}

+
∞∑
m=1

{e−(2mπ+c)b Ei[(2mπ + c)b] − e−(2mπ−c)b Ei[(2mπ − c)b]}. (35)

Noting that the asymptotic expansions of the exponential integral functions are

E1(x) ∼ e−x

x

[
1− 1!

x
+ 2!

x2
−+ · · ·

]
Ei(x) ∼ ex

x

[
1+ 1!

x
+ 2!

x2
+ · · ·

]
(36)

it is seen that the terms in the transformed series decrease approximately as 1/(2mπ ± c).
Further acceleration by the Kummer transformation is clearly required. However, it is
clear from equations (36) that to get the same speed of convergence as obtained in the
preceding section for the Oleksy series, two terms of the asymptotic expansion must be
taken. Thus
∞∑
m=1

{e(2mπ+c)bE1[(2mπ + c)b] − e(2mπ−c)bE1[(2mπ − c)b]}

= 1

2b

[
cot
c

2
− 2

c

]
− 1

4π2b2

[
ζ

(
c

2π
, 2

)
− ζ

(−c
2π
, 2

)]

+
∞∑
m=1

{
e(2mπ+c)bE1[(2mπ + c)b] − e(2mπ−c)bE1[(2mπ − c)b]

− 1

(2mπ + c)b +
1

(2mπ + c)2b2
+ 1

(2mπ − c)b −
1

(2mπ − c)2b2

}
(37)

and similarly for the other series

∞∑
m=1

{e−(2mπ+c)b Ei[(2mπ + c)b] − e−(2mπ−c)b Ei[(2mπ − c)b]}

= 1

2b

[
cot
c

2
+ 2

c

]
− 1

4π2b2

[
ζ

(
c

2π
, 2

)
− ζ

(−c
2π
, 2

)]
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+
∞∑
m=1

{
e−(2mπ+c)b Ei[(2mπ + c)b] − e−(2mπ−c)b Ei[(2mπ − c)b]

− 1

(2mπ + c)b −
1

(2mπ + c)2b2
+ 1

(2mπ − c)b +
1

(2mπ − c)2b2

}
. (38)

A question that arises naturally from consideration of these examples and that of the
previous section is that of how one can account for such very different convergence
properties. In the next section, it is shown how these differences can be related to the
power series expansions of the coefficient functions in the Fourier series.

5. Rational approximations to the coefficient functions

Sufficient conditions for the existence of a Fourier integral representation of a function
f (x) are that: (a)f is sectionally continuous in every finite interval of thex axis;
(b) f (x0) = [f (x0− 0)+ f (x0+ 0)]/2 at each point of discontinuityx0; and (c)|f (x)| is
integrable from−∞ to +∞ [15, p 115]. For monotonically decreasing functions defined
for positive values ofx, to which attention is henceforth restricted, the absolute integrability
condition in turn requires that|f (x)| < M/x1+α, for some positive constantsM andα. It
is, however, to be observed that integrals of the form∫ ∞

0
f (x) costx dx

∫ ∞
0
f (x) sintx dx

can exist under weaker conditions, since the sub-integralsIn between successive nodes of
the circular functions have alternating signs, and by Leibniz’ theorem, the sum of these
integrals is convergent if|In| → 0 asn→∞.

In general, an approximate calculation of the Fourier transforms of a function requires
suitable approximations to the sum of its power series. Since finite Taylor polynomials
have the limitation of being accurate only for small values ofx, it is preferable to use
Pad́e approximations tof (obtained, for example, from continued fraction developments)
since these are well known [16] to be useful in determining the asymptotic behaviour of
a function from the first few terms of the power series. Perhaps the most important fact
for present purposes is that the convergence of a power series does not necessarily imply
convergence of the corresponding continued fraction representation, andvice versa: it is
well known that some continued fractions can converge even for power series with zero
radius of convergence. More specifically, Henrici [17, pp 518–29] proves that the existence
and uniqueness of a continued fraction development for a given power series follow only
if the so-called Hankel determinants constructed from the coefficients of the power series
do not vanish, and bases most of his analytical treatment on this hypothesis.

Let us, therefore, assume that the power series coefficients off satisfy the conditions
for existence and uniqueness of continued fraction development. Then the convergents of
this continued fraction can be used to form a sequence of [n, n + 1] Pad́e approximants
that for a given value ofx represents the function arbitrarily closely. The coefficients in
the numerators and denominators of these rational polynomials can be obtained in a variety
of ways, of which one the simplest is the division algorithm described by Demidovich and
Maron [18, pp 70–3]. Application of this algorithm to a function represented in the form

f (x) = c10+ c11x + c12x
2+ c13x

3+ · · ·
c00+ c01x + c02x2+ c03x3+ · · · (39)
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results in the continued fraction

f (x) = c10

c00+ c20x

c10+ c30x

c20+ c40x

c30+ · · ·

(40)

where the denominatorsc are defined recursively by the equation

cjk =
∣∣∣∣ cj−2,0 cj−2,k+1

cj−1,0 cj−1,k+1

∣∣∣∣. (41)

Those convergents of the continued fraction (40) that multiply out to give [n, n+ 1] Pad́e
approximants tend to zero with increasingx, and can, therefore, be Fourier transformed.
For example, ifc00 = 1 andc01 = c02 = · · · = 0, the [0, 1] approximation

f (x) ≈ c10

1+ (c20x/c10)
(42)

tends to zero with increasingx, and gives Fourier transforms∫ ∞
0

c10

1+ (c20x/c10)
costx dx = (c2

10/c20)

[
cos

c10t

c20
Ci

(
c10t

c20

)
+ sin

c10t

c20
Si

(
c10t

c20

)]
(43)∫ ∞

0

c10

1+ (c20x/c10)
sintx dx = (c2

10/c20)

[
cos

c10t

c20
Si

(
c10t

c20

)
− sin

c10t

c20
Ci

(
c10t

c20

)]
. (44)

Since the [2, 3], [4, 5] . . . approximations can be broken down into partial fractions that
contain reciprocal linear factors similar in form to equation (42), the asymptotic behaviour
of the Fourier transforms of these functions can be expected to be similar. However, since
the poles of these rational approximants do not necessarily lie on the real or imaginary axes,
the Fourier transforms can be expected to contain Si and Ci functions of general complex
argument.

By partial integration, the Fourier cosine transform of an even function can be expressed
as the Fourier sine transform of an odd function (its derivative), if this integral exists. The
Fourier cosine transform of an odd function can likewise be expressed as the Fourier sine
transform of its even derivative. The qualitative behaviour of these two cases can be
determined by supposing that instead of equation (39) the functionf is represented by

f (x) = c10+ c11x
2+ c12x

4+ c13x
6+ · · ·

c00+ c01x2+ c02x4+ c03x6+ · · · . (45)

Following the same procedure applied to equation (39), but withx in equations (40)–(42)
replaced throughout byx2, the expression for the first approximation to the Fourier cosine
transform corresponding to equation (42) is∫ ∞

0

c10

1+ (c20x2/c10)
costx dx = c2

10

c20

π

2
√
c10/c20

e−t
√
c10/c20 (46)

and the first approximation to the Fourier sine transform corresponding to equation (43) is∫ ∞
0

c10

1+ (c10x2/c20)
sintx dx

= c10

2
√
c10/c20

[et
√
c10/c20E1(t

√
c10/c20)+ e−t

√
c10/c20 Ei(t

√
c10/c20)]. (47)

The higher [n, n+ 1] approximations are rational polynomials inx2, whose poles lie in the
upper half of the complex plane. Since these rational polynomials obey the conditions of
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Jordan lemmas [4, pp 35–8] and can be expanded in reciprocal quadratic partial fractions,
the Fourier cosine transforms can be found by the well known technique of integration
around a semicircular contour in the upper half-plane. On the other hand, the Fourier sine
transform will be approximated by a sum of exponential-integral functions of the form (47).
The conclusion is that the Fourier cosine transforms will tend to zero exponentially with
increasingt , while the Fourier sine transforms tend to zero as 1/t .

If the functionf has a power series consisting only of odd powers, it can be represented
most generally in the form

f (x) = x c10+ c11x
2+ c12x

4+ c13x
6+ · · ·

c00+ c01x2+ c02x4+ c03x6+ · · · (48)

so the first approximation to the Fourier cosine and sine transforms are∫ ∞
0

c10

1+ (c20x2/c10)
x costx dx

= c10

2
[et
√
c10/c20E1(t

√
c10/c20)− e−t

√
c10/c20 Ei(t

√
c10/c20)] (49)

from equation (28), and∫ ∞
0

c10

1+ (c20x2/c10)
x sintx dx = c2

10

c20

π

2
e−t
√
c10/c20 (50)

from equation (29). For functions of this kind, the higher rational approximations are the
same as those for even functions, but multiplied by an additional factorx. After resolution
into partial quadratic fractions, the corresponding approximations to the Fourier cosine
and sine transforms will consist of sums of functions of the kind given by equations (49)
and (50), respectively. The convergence behaviour of transformed Fourier series with odd
coefficient functions will be the opposite of those with even coefficient functions.

5.1. Examples

To make these ideas concerning the approximation of Fourier transforms more definite, let
us consider the examplef (x) = exp(−ax), wherea is real and positive. For this function
the Fourier transforms are particularly simple, viz∫ ∞

0
e−ax sintx dx = t

a2+ t2 (51)∫ ∞
0

e−ax costx dx = a

a2+ t2 . (52)

Here, the appropriate Fourier series can be summed in closed form by identification as
geometric series
∞∑
n=0

e−na cosnc = 1

2

( ∞∑
n=0

e−n(a+ic) +
∞∑
n=0

e−n(a−ic)

)
= 1− e−a cosc

1− 2 e−a cosc + e−2a
(53)

∞∑
n=0

e−na sinnc = 1

2i

( ∞∑
n=0

e−n(a+ic) −
∞∑
n=0

e−n(a−ic)

)
= e−a sinc

1− 2 e−a cosc + e−2a
(54)

Schwatt [19, pp 211–43] gives a comprehensive discussion of these and other interesting
examples of exactly summable trigonometric series. It would not, therefore, be necessary to
accelerate the convergence by use of the PSF, but this example is still useful in illustrating
the approximation of the Fourier transforms. From the continued fraction development, with
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c00 = 1, c01 = c02 = · · · = 0, c10 = 1, c11 = −a, andc20 = a, the [0, 1] Pad́e approximation
is 1/(1+ ax). The corresponding approximation to the Fourier cosine transform is∫ ∞

0

costx

1+ ax dx = 1

a

∫ ∞
0

costx

1/a + x dx = cos
t

a
Ci

(
t

a

)
+ sin

t

a
Si

(
t

a

)
≡ g

(
t

a

)
(55)

where g is the auxiliary function defined by equation (19), and taking into account the
asymptotic expansion ofg (equation (20))

g

(
t

a

)
∼
(
a

t

)2

(56)

it is clear that equation (55) provides an arbitrarily good approximation to the Fourier
transform for sufficiently larget . Specifically, for some numberε > 0, the condition∣∣∣∣ at2 − a

a2+ t2
∣∣∣∣ < ε (57)

is satisfied ift > (a3/ε)1/4. Clearly, similar procedures can be applied to the Fourier sine
transform, but in this case the exact transform is asymptotic to 1/t , which behaviour is also
shown by the asymptotic expansion of the other auxiliary function given by equation (22).

The examples considered so far have involved functions possessing finitely many poles.
As an example of a series in which the coefficients are even functions ofn, and which has
a countable infinity of poles, consider

∞∑
n=−∞

coscn

coshan
(58)

which whena is close to zero converges slowly. According to Erdélyi et al [20, p 30] the
required Fourier cosine transforms are all of the form∫ ∞

−∞

coscx

coshax
dx = π

a cosh(πc/2a)
(59)

wherec is replaced in the transformed series by 2πm±c. The transformed series is therefore
∞∑

n=−∞

coscn

coshan
= π

a

∞∑
m=−∞

1

cosh(π/2a)(2mπ + c) (60)

which converges extremely rapidly. The value ofn required to make the absolute value of
the coefficient function in the leading term of equation (58) less thanε is

n =
[

1

a
cosh−1 1

ε

]
. (61)

For example, witha = 0.1, c = 0.3, andε = 10−7, the value ofn required is 168. In
contrast, them = 0 term in equation (60) is 0.017 965 132(π/a), and them = 1 term is
2.462 170 735× 10−45(π/a)!

The PSF can also be applied to series involving more complicated functions possessing
branch points and similar singularities. The best known examples are the Madelung sums for
coulomb potentials in ionic crystals, where the reciprocal distance between the lattice points
involves a square root function, and the periodic alternation of signs of the ionic potentials
can be regarded as a type of Fourier series. Many highly efficient and ingenious methods
have been applied to the evaluation of lattice sums. The best known of these methods
are based on various integral representations of the reciprocal distance, for example those
involving Gaussian functions [21], or gamma functions [22]. Application of the PSF to the
evaluation of coulomb potential lattice sums generally results inK0 Bessel functions [23].
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As another example of series of irrational (square root) terms, for which application
of the PSF givesK0 Bessel functions, let us consider the problem of developing a rapidly
converging form of the series

G(x, y | ξ, η) = 2

a

∞∑
n=1

sinhσny sinhσn(b − η)
σn sinhσnb

sin
nπx

a
sin

nπξ

a
(y < η) (62)

where

σn ≡
√
β2+

(
nπ

a

)2

.

This can be identified (Roach [24, p 270]) as the Green function for the partial differential
equation

∇2w − β2w = 0 (63)

with Dirichlet boundary conditions, in a rectangular domain 0< x < a, 0 < y < b.
This equation arises in the solution of a linearized Navier–Stokes equation describing the
development of steady laminar flow of an incompressible fluid in a rectangular duct. The
parameterβ is a function ofz, which assumes large values near the mouth of the duct, but
decays to zero asz increases to infinity, where (as is well known) the velocity profile is
described by a series of rectangular harmonics. It is clear that in the physically important
region whereβ is large, the series has poor convergence properties. Application of the PSF
to

∞∑
n=−∞

sinhσnη sinhσn(b − y)
σn sinhσnb

eicn ≡
∞∑

n=−∞
f (n) eicn (64)

requires evaluation of the integral∫ ∞
−∞

f (t) cosct dt ≡
∫ ∞
−∞

sinhση sinhσ(b − y)
σ sinhσb

cosct dt (65)

where the subscript onσ has been dropped for clarity, remembering thatσ is a function of
t . The product of hyperbolic functions can be expanded as a geometric series of exponential
terms by observing that

sinhση sinhσ(b − y)
sinhσb

= coshσ(b − y + η)− coshσ(b − y − η)
sinhσb

(66)

and
coshσ(b − |y ± η|)

sinhσb
= eσ(b−|y±η|) + e−σ(b−|y±η|)

eσb − e−σb

=
∞∑
k=0

e−σ [2kb+|y±η|] +
∞∑
k=0

e−σ [2(k+1)b+|y±η|] . (67)

It is therefore sufficient to consider the function

G(p) =
∞∑

n=−∞

e−p
√
β2+(nπ/a)2√

β2+ (nπ/a)2
coscn (68)

where the parameterp depends linearly ony, η, b andk. If p is small andβ is large, the
magnitude of the exponential terms will be dominated byβ and will tend to zero slowly
with increasingn. The Fourier integral required for application of the PSF is therefore∫ ∞
−∞

e−p
√
β2+(xπ/a)2√

β2+ (xπ/a)2
coscx dx = a

π

∫ ∞
−∞

e−(pπ/a)
√
x2+(βa/π)2√

x2+ (βa/π)2
coscx dx. (69)
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This expression is not amenable to evaluation by residues, but can be evaluated according
to the formula given by Erd́elyi et al [20, p 17]∫ ∞

0

e−B
√
x2+A2

√
x2+ A2

cosxt dx = K0[A
√
B2+ t2] (70)

whereK0 is the modified Bessel function of the second kind, of order zero. This result may
be derived as shown in appendix C from known Fourier and Laplace transforms. Making
the identifications

A = βa

π
B = pπ

a
t = c (71)

the integral of interest is∫ ∞
−∞

e−p
√
β2+(xπ/a)2√

β2+ (xπ/a)2
coscx dx = 2a

π
K0

[
aβ

π

√(
pπ

a

)2

+ c2

]
. (72)

The transformed series is therefore

G(p) =
∞∑

n=−∞

e−p
√
β2+(nπ/a)2√

β2+ (nπ/a)2
coscn = 2a

π

∞∑
m=−∞

K0

[
aβ

π

√(
pπ

a

)2

+ (2mπ + c)2
]

(73)

which converges extremely rapidly ifβ is large andp is small.
The PSF can be applied with equal success to more complicated cases where analytical

expressions for the required transforms are not available. Purely numerical application of
the PSF could, in principle, be based on any technique for evaluation of transforms (e.g.
the fast Fourier transform algorithm). However, since the transform is typically required
for only a few values of the transform variable, it is more efficient to determine the Fourier
transforms by combination of a quadrature rule suited to integration between the nodes of the
circular functions, and a sequence transformation applicable to sums of slowly decreasing
terms of alternating signs (e.g. the Euler transformation). The optimal combination of
these numerical techniques will be discussed in a subsequent paper. The analytical results
presented here will facilitate the intelligent use of these numerical procedures by allowing
identification of series for which use of the PSF is appropriate.

6. Conclusions

The purpose of this paper was to determine the conditions under which the PSF is useful
in the transformation of slowly converging Fourier series. The extent of convergence
acceleration achieved can be related to the asymptotic behaviour of the required Fourier
transforms, and a method whereby this asymptotic behaviour could be determined from the
power series of the coefficient functions was described.

For Fourier-transformable functions that can be approximation by continued fraction
developments, approximations to the Fourier cosine and sine transforms can be obtained
from the convergents that are equivalent to (n, n + 1) Pad́e approximants, after expansion
in partial fractions. The pattern that emerges can be summarized as follows.

(1) For an even functionf (x), the Fourier cosine transform decreases exponentially
with increasing transform variablet , but the Fourier sine transform involves exponential
integral functions E1 and Ei and tends to zero approximately as 1/t .

(2) If f (x) is odd, the Fourier sine transform decreases exponentially with increasing
transform variablet , but the Fourier cosine transform involves exponential integral functions
E1 and Ei and tends to zero approximately as 1/t .
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(3) If f (x) has a power series with both odd and even powers ofx, the Fourier transforms
can be approximated in terms of the sine and cosine integral functions Si and Ci, which are
asymptotic to 1/t and 1/t2 respectively.

The PSF, therefore, works best for Fourier cosine series where the coefficient functions
are even, and Fourier sine series where the coefficient functions are odd. In all other cases,
application of the PSF produces a transformed series that, in general, requires additional
convergence acceleration, for example, by the Kummer transformation.

Acknowledgments

The author is grateful to Professor W R Bloom of Murdoch University, Western Australia,
for helpful comments on the present paper, and to Oak Ridge National Laboratory for
an appointment as a Guest Scientist. He is also indebted to an anonymous referee of an
earlier paper for pointing out the connection between equation (16) and the hypergeometric
function.

Disclaimer

The submitted manuscript has been authored by a contractor of the US Government
under contract No DE-AC05-96OR22464. Accordingly, the US Government retains a
non-exclusive, royalty-free licence to publish or reproduce the published form of this
contribution, or allow others to do so, for US Government purposes.

Appendix A. Derivation of equations (18) and (19)

After making the substitutionu = t + a, the first integral in the summand of equation (13)
can be expressed in terms of the sine and cosine integral functions∫ ∞

0

e2π i(n+x)t

a + t dt =
∫ ∞

0

e2π i(n+x)(u+a)

u
du = e−2πa(n+x)i

∫ ∞
2πa(n+x)

eit

t
dt (A.1)

= [cos 2πa(n+ x)− i sin 2πa(n+ x)][Ci(2πa(n+ x))+ i Si(2πa(n+ x))]
= cos 2πa(n+ x)Ci(2πa(n+ x))+ sin 2πa(n+ x)Si(2πa(n+ x))
+i[− sin 2πa(n+ x)Ci(2πa(n+ x))+ cos 2πa(n+ x)Si(2πa(n+ x))]

where

Si(y) ≡
∫ ∞
y

sint

t
dt Ci(y) ≡

∫ ∞
y

cost

t
dt.

Proceeding similarly, the other integral is found to be∫ ∞
0

e−2π i(n−x)t

a + t dt (A.2)

= cos 2πa(n− x)Ci(2πa(n− x))+ sin 2πa(n− x)Si(2πa(n− x))
+i[sin 2πa(n− x)Ci(2πa(n− x))− cos 2πa(n− x)Si(2πa(n− x))].

The real and imaginary parts of the exponential Fourier series therefore are

∞∑
n=0

cos 2πnx

n+ a = 1

2a
+ g(2πax)+

∞∑
n=1

[g(2πa(n+ x))+ g(2πa(n− x))] (A.3)



Analytical summation of Fourier series 9971

and
∞∑
n=1

sin 2πnx

n+ a =
∞∑
n=1

[f (2πa(n− x))− f (2πa(n+ x))] (A.4)

where the auxiliary functionsf andg are defined by

g(y) ≡ cosy Ci(y)+ siny Si(y) f (y) ≡ siny Ci(y)− cosy Si(y).

In the present work, the sine and cosine integral functions were evaluated by summation
of their power series expansions for small arguments (less than unity). For larger arguments,
values off and g were calculated by use of the rational polynomial approximants given
by Abramowitz and Stegun [12, p 235] and the sine and cosine integrals were obtained by
rearrangement of these definitions. Since the error limit for these polynomial approximants
was stated to be about 5× 10−7 for f and 3× 10−7 for g, all calculations were carried out
in single precision.

Appendix B. Evaluation of the Hurwitz zeta function

The series of functions defined by the equation

Sp2 ≡
∞∑
n=1

1

np(n+ x)2 (B.1)

for p = 0, 1, 2, . . . satisfy a recurrence relation that can easily be established by application
of the Kummer transformation

Sp2 =
∞∑
n=1

1

np+2
−
∞∑
n=1

[
1

np+2
− 1

(n+ x)2np
]

=
∞∑
n=1

1

np+2
−
∞∑
n=1

np(n+ x)2− np+2

n2p+2(n+ x)2
= ζ(p + 2)− 2xSp+1,2− x2Sp+2,2 (B.2)

whereζ(p + 2) is the Riemann zeta function of argumentp + 2. Forp = 3 andp = 4,
the series defined by equation (B.1) can be determined directly, and the recurrence used to
obtain corresponding sums forp = 2, 1, and 0. After appropriate substitution and collecting
terms the result is

ζ(x, 2) ≡ S02 = ζ(2)− 2xξ(3)+ 3x2ζ(4)− 4x3S32− 3x4S42. (B.3)

The required values of the Riemann zeta function are well known [12, p 811]

ζ(2) = π2

6
ζ(3) = 1.202 0569. . . ζ(4) = π4

90
. (B.4)

Appendix C

The exponential function may be represented as a Laplace transform by use of the formula
[20, p 246] ∫ ∞

0
e−st

e−a
2/4t

√
πt

dt = e−a
√
s

√
s

(C.1)
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so that∫ ∞
0

e−β
√
x2+a2

√
x2+ a2

cosxy dx =
∫ ∞

0
cosxy

{∫ ∞
0

e−t (x
2+a2)−β2/4t

√
πt

dt

}
dx

=
∫ ∞

0

e−ta
2−β2/4t

√
πt

{∫ ∞
0

e−tx
2

cosxy dx

}
dt (C.2)

on interchanging the order of integration. Evaluating the integral overx by use of the result
[20, p 15]∫ ∞

0
e−tx

2
cosxy dx = 1

2

√
π

t
e−y

2/4t

∫ ∞
0

e−ta
2−β2/4t

√
πt

{∫ ∞
0

e−tx
2

cosxy dx

}
dt =

∫ ∞
0

e−ta
2−β2/4t

√
πt

{
1

2

√
π

t
e−y

2/4t

}
dt

= 1

2

∫ ∞
0

1

t
e−ta

2−(β2+y2)/4t dt (C.3)

which is recognizable as one of the integral representations ofK0 discussed by Watson
[25, p 183–7].
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